Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole

نویسندگان

  • Manuel A. Hutterli
  • Joseph R. McConnell
  • Gao Chen
  • Roger C. Bales
  • Douglas D. Davis
  • Donald H. Lenschow
چکیده

Average H2O2 (HCHO) mixing ratios measured above the snowpack at South Pole (SP) were 278 pptv (103 pptv) in December 2000 and between 4 and 43 times (1.4–2.6 times) the value estimated from gas-phase photostationary state (PSS) model calculations. The larger difference is realized if dry deposition of both species is included in the model. H2O2 and HCHO fluxes from the snowpack were independently determined from gradient measurements in the air above the snow surface, from firn-air measurements and from the temporal concentration changes in near-surface snow. On average, the snowpack at SP was releasing on the order of 1 10 and 2 10 moleculesm 2 s 1 of H2O2 and HCHO, respectively, in December 2000. This is consistent with the volumetric fluxes needed for the PSS model to reproduce the observed atmospheric mixing ratios of both H2O2 and HCHO. The highly elevated levels of both species found in firn air further support the above estimates. In the case of HCHO, it was also shown that there was good agreement between the measured flux and the physical air–snow exchange model as driven by changes in snow temperature from winter to summer. Shading experiments suggest that the net production of HCHO within the snow by heterogeneous photochemical processes may have exceeded photochemical destruction by no more than 20% of the measured fluxes. The very rapid changes observed in atmospheric HCHO, which are also seen in NO and OH, can be understood in terms of dynamical processes that lead to rapid changes in the atmospheric mixing depth. r 2004 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive trace gases measured in the interstitial air of surface snow at Summit, Greenland

Concentration measurements of nitric oxide (NO), nitrogen dioxide (NO2), nitrous acid (HONO), nitric acid (HNO3), formaldehyde (HCHO), hydrogen peroxide (H2O2), formic acid (HCOOH) and acetic acid (CH3COOH) were performed in air filtered through the pore spaces of the surface snowpack (firn air) at Summit, Greenland, in summer 2000. In general, firn air concentrations of NO, NO2, HONO, HCHO, HC...

متن کامل

Contrasting atmospheric boundary layer chemistry of methylhydroperoxide (CH3OOH) and hydrogen peroxide (H2O2) above polar snow

Atmospheric hydroperoxides (ROOH) were measured at Summit, Greenland (72.97 N, 38.77 W) in summer 2003 (SUM03) and spring 2004 (SUM04) and South Pole in December 2003 (SP03). The two dominant hydroperoxides were H2O2 and CH3OOH (from here on MHP) with average (±1σ ) mixing ratios of 1448 (±688) pptv, 204 (±162) and 278 (±67) for H2O2 and 578 (±377) pptv, 139 (±101) pptv and 138 (±89) pptv for M...

متن کامل

Sensitivity of hydrogen peroxide (H2O2) and formaldehyde (HCHO) preservation in snow to changing environmental conditions: Implications for ice core records

[1] Sensitivity studies with physically based numerical air–snow–firn transfer models for formaldehyde (HCHO) and hydrogen peroxide (H2O2) show that even though nonlinear processes determine the preservation of HCHO and H2O2 in snow and firn, changes in atmospheric mixing ratios are linearly recorded in ice cores under otherwise constant environmental conditions. However, temperature, snowpack ...

متن کامل

1-D air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003

Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract A 1-D air-snowpack model of HONO has been developed and constrained by observed chemistry and meteorology data. The 1-D model includes molecular diffusion and mechanical dispersion, windpumping in snow, ...

متن کامل

Assessment of VOCs, PM10, and Formaldehyde Exposure in the Hair Salons of South Korea

Introduction: In hair salons, workers and customers are exposed to high concentrations of several chemical compounds used during the working environment. Volatile Organic Compounds (VOCs), particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and formaldehyde are the major chemicals that alter the indoor air quality. This study aimed to assess the indoor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004